[P PingCAP (D TIDB

Performance tracing
with BPF

Presented by Dongxu Huang / Wenbo Zhang

7\

[P PingCAP (I TIDB

Catalog

Part 1 - BPF's past and present
Part 2 - Why BPF?

Part 3 - Where to start?

Part 4 - Some real cases

[P PingCAP (I TIDB

Part 1 - BPF's past
and present

What’s BPF

It is a small stack-based virtual machine which runs programs injected from user space and
attached to specific hooks in the kernel without changing kernel source code or loading

kernel modules.

Fundamentally eBPF is still BPF, the Linux kernel community does not make a distinction,
the official name is BPF. So we also follow this rule.

sC
=_ eBPF
== Program == program

’—_>{ clang -target bpf]\—’ Program © Maps Procass

Development

[ﬁeBPF Go Library] sendmsg() recvmsg()
HeBPF
T v |
X
b . o)
c o

Runtime

cBPF vs eBPF

cBPF (legacy, Familiar and unfamiliar)
e a 32-bit wide accumulator, a 32-bit wide
‘X’ register which could also be used
within instructions, and 16 32-bit
registers which are used as a scratch
memory store.

eBPF

e an expanded set of registers and of
instructions, the addition of maps
(key/value stores without any restrictions
in size), a 512 byte stack, more complex
lookups, helper functions callable from
inside the programs, and the possibility
to chain several programs.

Classical BPF Machine

Registers Scratch Pad
31

15

-p —ni eml —-d

[12]
#0x800
#262144
#0

o

63

n

ip"

i)

Extended BPF Machine

General
Purpose ®
Registers

‘
!

511

-

jf 3

No sw
limit to
size

Major opportunity

e Networking

@ kubernetes

@
Hardware Software-Defined .. aleB P F

Networking Networking Ci | ium

90s 1999 2001 2003 2007 2009 2010 2013 2014

First commit -%.

to Kubernetes

» Tech-Debt: Lots of

intahles
2014 2015 2016
r I 1 1
First eBPF patch eBPF backend cls_bpf makes XDP enables
setis merged into merged into Linux high-performance
the Linux Kernel. LLVM compiler networking datapath for LB
suite. programmable and DDoS

mitigation

Major opportunity

e Networking

g Control plane - : s
& Communication w/rest of system === P Program execution phase transitions
3
=) Communication with rest of system
Kernel Other BPF N e
A A networking stack Popan y Packetfow
: : in kernel
E .
= | Network stack
g - Read/write metadata Packet verdict
|
_g Context object Kernel helpers Maps
§ - RX metadata (queue no, ...) Use kernel functions, e.g.: - Key/value stores
E " - Pointer to packet data - Checksumming - Hash, array, trie, etc.
R = é- - Space for custom metadata | | - Routing table lookups - Defined by program ~
; = 8
: & 8 3
: = E=1 i)
; Queueing N [w
and forwarding [eldas]} > e : E ﬁ
; A ' S
g T ' \
Device driver z
X! XDP Build sk_buff Parse packet Rewrite packet o
Drop S
vy — L J &
T [7 : - Direct memory access to packet data | | <@ w == | | - Write any packet header / payload E
| PP - Tail calls to split processing - Grow/shrink packet headroom El
[Network hardware J o) &I

— cieeeio-s >
Packet data flow Control data flow

. Userspace-accessible sockets : User applications, VMs, containers

Network stack processing steps D Parts of the XDP system

Major opportunity

e Tracing

ftrace perf_events eBPF SystemTap

»_ @D

L~ SRt T %

LTTng ktap dtracedlinux OEL DTrace sysdig

ftrace shortcomings:
e Plain text, sometimes unable to match data
correctly or redundant
kprobe shortcomings:
e Unsafe and poor compatibility may crash kernel

systemtap shortcomings:
e Uninstallation is not clean, causing kernel panic

perf events
e Sometimes the overhead of record is too high

Choosing a Tracer

* My approach is:

live tracing,
counting

PMCs,

stack profiling,
trace-dump-
analyze

Study what Linux already has built-in
(perf_events, ftrace, eBPF?)

Try SystemTap

in-kernel
summaries

Try LTTng

| perf_events | | eBPF I

>

A eBPF

BPF Tracing Internals

Observability Program

Kernel

load : :
BPF BPF __— verifier static tracing
program bytecode l tracepoints
attach / s i
event config dynamic tracing
BPF i kprobes
<«——— per-event - uprobes
data
output aayne sampling, PMCs
copy
—— statistics maps perf_events

BPF dev experience —— Prehistoric

I
BPF Assembly
e CONS

o Low development efficiency
o inconvenient to deal with system calls directly

struct bpf_insn prog[] = {
BPF_MOV6L_REG(BPF_REG_6, BPF_REG_1),
BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
BPF_LD_MAP_FD(BPF_REG_1, map_fd),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, ©, BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

BPF_MOV64_IMM(BPF_REG_1, 1),

BPF_ATOMIC_OP(BPF_DW, BPF_ADD, BPF_REG_O, BPF_REG_1, 0),
BPF_MoV64_IMM(BPF_REG_0, 0),

BPF_EXIT_INSN(),

3

size_t insns_cnt = sizeof(prog) / sizeof(struct bpf_insn);

prog_fd = bpf load program(BPF_PROG_TYPE_SOCKET_FILTER, prog, insns_cnt,
"GPL", 0, bpf_log_buf, BPF_LOG BUF_SIZE);

BPF dev experience —— Big improve!

BPF Compiler Collection (BCC)

e PROS
o Provide one-stop service
e CONS

o Unnatural, need to remember some “magic”
o Every machine needs to install kernel header packages
o The libbcc library contains a huge LLVM or Clang library

\ Development server |

- ControlApp.cpp
#include bpf.h>
h> i PF.h>

App package

embed

ControlApp i libbcc
LLVM/Clang

BPF dev experience —— Next level !

libbpf + BPF CO-RE (Compile Once — Run Everywhere)
e PROS

o Not much different from any “normal” user-space program
o Smart BPF loader
o Minimal dependencies

System headers Kernel
Linux/bpf.h . YOU SHALL

#include <linux/bpf.h>

#include <linux/filter.h> + linux/filter.h

int prog(...) { linux/shed.h
linux/fs.h

bpf.c

}

NOT PASS

Current status of BPF

The rapid development of the community
e 31 BPF prog types
e 28 BPF map types
e New feature, such as

O
O
O
©]
©]

bpf spin lock

Kernel operations structures in BPF
Sleepable BPF programs

bpf iterator

bpf ring buffer

e More and more hook points
e More and more BPF helpers

[P PingCAP (I TIDB

Part 2 - Why BPF?

Why BPF?

If a desired behavior cannot be configured, a kernel change is required, historically, leaving
two options:

e Native Support
1. Change kernel source code and convince the Linux kernel community that the change is
required.
2. Wait several years for the new kernel version to become a commodity.

e \Write a kernel module
1. Fix it up regularly, as every kernel release may break it
2. Risk corrupting your Linux kernel due to lack of security boundaries

A new option

With BPF, a new option is available that allows for reprogramming the behavior of the Linux
kernel without requiring changes to kernel source code or loading a kernel module. In many
ways, this is very similar to how JavaScript and other scripting languages unlocked the
evolution of systems which had become difficult or expensive to change.

[P PingCAP (I TIDB

Part 3 - Where to
start?

Write a Hello world?

No, the best way to get started is to deploy and have fun

New tools developed for the book BPF Performance Tools: Linux System and Application Observability
by Brendan Gregg (Addison Wesley, 2019), which also covers prior BPF tools

filetop opensnoop c* java* node* php* javathreads gethostlatency
filelife fileslower statsnoop python* ruby* memleak
viscount vfsstat syncsnoop mysqgld_gslower SRR sslsniff
£i1 £ ioprofile dbstat dbslower | 2
o gl e bashreadiine priock pring
writesync P ucalls uflow mysqld_clat pmlock pmheld
uobjnew ustat bashfunc syscount
cachestat cachetop u::hreads ugc bashfunclat killsnoop
decstat desnoop |
) mounienccs o o
icstat Appllcatlons eperm setuids
b;ﬁg“’: Runtimes elfsnoop modsnoop
readahea ¥ exe P exitsnoop
NE— | System Libraries ¥, pidpaxrsec
trace ¥ cpudist cpuwalk
N il 1.
argaist A\ ¥ ¥V system caitntertace yZ g
funccount :
funcslower “ Al / cpuunclaimed
funclatency N VES * 4 Sockets - deadlock
stackcount - Scheduler - offcputime wakeuptime
profile ly~ File Systems / TCP/UDP - offwaketime softirgs
/ I~~~ offcpuhist threaded
btrfsdist Volume Manage P) pidnss mlock mheld
btrfsslower i g Virtual] smpcalls workq
ext4dist extdslower | K Memor \
nfsslower nfsdist ;4 Block Devu:e// Net Device y slabratetop
xfsslower xfsdist v\ ;)‘:'J‘mklll x;emleak
i . 5 shmsnoop drsnoo
v zfsslower zfsdist f //4 Device Drlvers.l- \ \ P P
overlayfs 1 / f kmem kpages numamove
mdflush ; ieee802llscan| nettxlat mmapsnoop brkstack
scsilatency AVECLEESREY, o faults ffaults
biotop biosnoop scsiresult superping fmapfault hfaults
biolatency £, tcptop tcplife tcptracer qdisc-fq vmscan swapin
bitesize sotdsnoop tcpconnect tcpaccept \
seeksize . tcpconnlat tcpretrans hardirgs
biopattern mockstat.#afanily, tcpsubnet tcpdrop criticalgtat
& soprotocol sormem tcpstates
biostacks g ,oonnect soaccept X Other: ttysnoop
Legend: bioerr socketio socksize tepsynbl tcpwin
_g . iosched onnlat solstbyte tcpnagle tcpreset capable llcstat CPUs
E:ioioziol blkthrot skbdrop skblife udpconnect ﬁf&ﬁﬁii cpufréeq

Observe system calls

System call is the dividing line between user mode and kernel mode, observing system calls
is the simplest entry point.

Think about these:
1. When the sys cpu usage rate is high, which system call on this machine has the most number of
times?
When the sys cpu usage rate is high, which processes call a lot of system calls?
Which system calls take the longest time ?
Does any system call return a special error value?
How to see the syscall's parameters and return value?

ok wn

Observe system calls — syscount

When the sys cpu usage rate is high, which system call on this machine has the most
number of times?

syscount

Tracing syscalls, printing top 1@... Ctrl+C to quit.

[09:39:04]

SYSCALL COUNT
write 10739
read 10584
wait4 1460
nanosleep 1457
select 795
rt_sigprocmask 689
clock_gettime 653
rt_sigaction 128
futex 86
ioctl 83

2C

Observe system calls — syscount

When the sys cpu usage rate is high, which processes call a lot of system calls?

syscount -P
Tracing syscalls, printing top 1@... Ctrl+C to quit.

[09:58:13]

PID COMM COUNT
13820 vim 548
30216 sshd 149
29633 bash 72
25188 screen 70
25776 mysqld 30
31285 python 10
529 systemd-udevd

1 systemd 8

494 systemd-journal
e

Observe system calls — syscount

Which system calls take the longest time ?

syscount -L

Tracing syscalls, printing top 1@... Ctrl+C to quit.

[09:41:32]

SYSCALL COUNT TIME (us)
select 16 3415860.022
nanosleep 291 12038.707
ftruncate il 122.939
write 4 63.389
stat i 23.431
fstat 1 5.088
[unknown: 321] 32 4.965
timerfd_settime 1 4.830
ioctl 3 4.802
kill 1 4.342

2C

Observe system calls — syscount

Does any system call return a special error value ?

syscount -e ENOENT -i 5
Tracing syscalls, printing top 10... Ctrl+C to quit.

[13:35::57]

SYSCALL COUNT
stat 4669
open 1951
access 561
Istat 62
openat 42
readlink

execve 4
newfstatat

[13:16:02]

SYSCALL COUNT
Istat 18506
stat 13087
open 2907
access 412
openat 19
readlink 12
execve F
connect 6
unlink |
rmdir 1

@

Observe system calls — trace

How to see the syscall's parameters and return value?

trace 'sys_execve "%s", argl' # trace 'sys_read (arg3 > 20000) "read %d bytes", arg3'

PID COMM FUNC - PID COMM FUNC -

4402 bash sys_execve /usr/bin/man 449 dd sys_read read 1048576 bytes

4411 man sys_execve /usr/local/bin/less 4490 dd sys_read read 1048576 bytes

4411 man sys_execve /usr/bin/less 4490 dd sys_read read 1048576 bytes

4410 man sys_execve /usr/local/bin/nroff 4490 dd sys_read read 1048576 bytes

4410 man sys_execve /usr/bin/nroff e

4409 man sys_execve /usr/local/bin/tbl

4409 man sys_execve /usr/bin/tbl

4408 man sys_execve /usr/local/bin/preconv

4408 man sys_execve /usr/bin/preconv

4415 nroff sys_execve /usr/bin/locale # trace.py -U -a 'r::sys_futex "%d", retval’

4416 nroff sys_execve /usr/bin/groff PID TID CoMM FUNC -

4418 groff sys_execve /usr/bin/grotty 793922 793951 poller sys_futex 0

4417 groff sys_execve /usr/bin/troff 7f6c72b6497a __111_unlock_wake+@xla [libpthread-2.23.s0]
AC 627fef folly::FunctionScheduler::run()+0x46f [router]

7f6c7345f171 execute_native_thread_routine+0x21 [libstdc++.s0.6.0.21]
7f6c72b5b7a9 start_thread+0xd9 [libpthread-2.23.s0]
7f6c7223fa7d clone+0x6d [libc-2.23.s0]

What’s next?

I
Try to play with: Stress test your Develop new Use BPF in more
® execsnoop system, or observe tools to meet areas, such as
e opensoop the online your needs. If security, networking,
o tcplife ——»> environmentwhen ——> youthinkyou ——) etc.
e extdslower there are problems can solve a
e Dbiosnoop such as resource type of
To observe system shortage, find the problem,
behavior right tool to analyze please submit
from the 150 tools it to the
community.

The community
experts will not
let you down

[P PingCAP (I TIDB

Part 4 - Some real
cases

top - 14:32:58 up users, load average: 8 2.79, 1.45

Tasks: 156 total, 10 running, 143 sleeping, @ stopped, 3 zombie

_ pu(s): 32.6 us, 66.7 sy, 0.0 ni, 0.6 id, 0.0 0.0 hi, 0.1 si, 0.0 st

KiB Mem : 39122288 total, 38147032 free 614424 buff/cache

KiB Swap: 2097148 total, 2097148 fr 38346216 avail Mem

SHR S %CPU %MEM TIME+ COMMAND

A 4-core virtual machine has a very e b O lowe L S 1o 00 b puosar

S
3 root 20 0 0 oS ksoftirqd/@
high load. From the summary S B migracion
information of top, you can see that i @m0 0
there are 10 tasks running, but only 1
task is running in the list. oo 3 :::fzziggz;l;;
9 root S ksoftirqd/
: ront : 1 koorker/2 1
What happened? 0 o e
e These tasks wear stealth suits ? Tt I
Is there a bug in the Linux kernel? g roct . o

[J
e [sthere a bug in top or pidstat?
ocalhost ~]$ pidstat 3
[) 3.10.0-862.e17.x86_64 (localhost) 08/07/2019 _x86_64_ (10 CPU)
:49 PM UID PID %usr %system %guest %CPU CPU Command
PM 7 .00 Q.33 0.00 0.33 @ migration/@
PM 13 .00 00 0.33 migration/1
2 PM 14 ksoftirgd/1
PM 18 .00 00 0.33 migration/2
PM 19 .00 00 . ksoftirqgd/2
PM .00 00 . migration/4
PM N 00 . ksoftirqd/4
PM .00 00 33 migration/5
3 .00 3 migration/6
.00 00 0.33 ksoftirqd/6
.00 00 o2 7 migration/7
00 00 3 migration/9
48 bash

[SESESY

0.
Q.
0.
0.
0.
Q.
0.
Q.
0.

Stealth process?

This prototype is based on the problem
of abnormal cpu usage that my internal
colleagues encountered when doing
grpc-cpp vs grpc-rust bench in 2019
year. The environment at that time was
also a little bit more complicated, in the
docker . So maybe docker’s bug?
cgroup’s bug? ...

[root@localhost perf-tools]# ./bin/execsnoop -d 1
Tracing exec()s for 1 seconds (buffered)...
Instrumenting

PID
26382
26383
26384
26387
26391
26392

PPID

sys_execve
ARGS

0 ./a
@ 1s -1 /sys/kerne/debug

./a

nohup ./a

<...> [7]

sleep 1

awk -v o=1 -v opt_name=@ -v name= -v opt_duration=1 [...]
1s -1 /sys/kerne/debug
1s -1 /sys/kerne/debug
nohup ./a

<o o> [2]

nohup ./a

<...> [7]

nohup ./a

nohup ./a

<....> [?2]

<...> [7]

nohup ./a

nohup ./a

> [7]

[7]

> [7]

nohup ./a

nohup ./

nohup ./
nohup .

6 nohup ./

oo o>
it

s o

nohup .

6 nohup ./

. Wil
nohup .
i o>

Why does the process always sleep ?

offcputime

offcputime 5

Tracing off-CPU time (us) of all threads

-]

finish task switch
schedule

schedule timeout

wait woken
skistreamiwaitimemory
tcp sendmsg locked
tcp sendmsg

inet sendmsg

sock sendmsg

sock write iter

new sync write

__vfs write

vis write

SyS write

do syscall 64

entry SYSCALL 64 after hwframe
__write

[unknown]

- iperf (14657)

by user + kernel

stack for

5

S

SeCs.

S

https://github.com/iovisor/bcc/blob/master/tools/offcputime.py

Weird minor page fault

One of our customers deployed TiDB in a virtual machine, which also has NUMA nodes. Because
the number of CPUs is small, we did not bind cores. High-latency GC problems occur during
business peaks, and there is no shortage of system resources from the monitoring. There is only
one anomaly —— minor page faults. So what is going on?

Weird minor page fault

We see that sys cpu has a
relatively high proportion, and it is
relatively simple to analyze the
problem of on-cpu. Look directly at
the on-cpu flame graph.

If you are familiar with the principle
of the NUMA scheduler, you can
know from the flame graph that it
is caused by autonuma.

[ENEI migrate_pages
- m" .n—“'

runtime.scanobject
runtime.gcDrain
runtime.gcBgMarkWorker.func2
runtime.systemstack
[unknown]

[unknown]

all

numamove.bt

Attaching 4 probes...

TIME NUMA migrations NUMA migrations ms
2234845 0 0
22:48:46 0 0
22948 A7 308 2.9
22:48:48

22248 :50
22:48:51
[...]

2 0
22:48:49 0 0
1 0
1 0

Another weird minor page fault

A colleague of us found that when testing a tikv cluster on a cloud platform, there would be a
problem of 99% delay of read 10 request doubled. From the monitoring, we observe that when the
delay is abnormal, the percentage of sys cpu usage will increase, and the corresponding minor
page fault also looks abnormally high. We know the speed of the cloud disk is also very slow, so is

it a disk problem? But if it is a disk reading, shouldn't it be a major page fault? Why are major page
faults almost 0 and all minor page faults?

Another weird minor page fault

Let's sort out our thoughts
e The cloud host is a single node, so there is no previous autonuma problem
e From 'sar -B" we see a lot of direct reclaim events
e TiKV allocates physical memory when reading the 1O path

OK, let's see which path is allocating physical memory __alloc_pages_nodemask
handle_mm_fault

__do_page_fault

do_page_fault

page_fault
do_generic_file_read.constprop.52
generic_file_aio_read2

first (with stackcount):

Can minor page fault happened in kernel mode?

extd_file_read
do_sync_read
vfs_read
sys_pread6d
system_call_fastpath
__pread_nocancel
__libc_start_main
279399

Another weird minor page fault

I
Can minor page fault happened in kernel mode? —— Yes, of course

In our case it is due to "copy_to_user .

ssize_t pread(int fd,|void *buf,|size_t count,

off_t offset);

Like the defensive programming we did when designing the interface, the kernel does not trust the
user address space passed by the user mode, so it will do some checks and make sure that the
user space to be operated has been mapped to physical memory. If not, then deal with it.

Another question, TiKV uses a memory pool. The 'buf passed to "‘pread64’ also comes from the
memory pool, and swap is not used. Why do we need to allocate physical memory?

Another weird minor page fault

Another question, TiKV uses a memory pool. The 'buf passed to "‘pread64’ also comes from the
memory pool, and swap is not used. Why do we need to allocate physical memory?

Because the existence of the memory pool is just to avoid frequently calling system calls to apply
and merge VMA operations. Physical memory is delayed allocation.

If we expect that the physical memory corresponding to a segment of VMA will not be reclaimed,
we can use the ‘mlock™ system call to put the page in a special LRU list.

Another weird minor page fault

Generally, the speed of physical memory allocation is very fast, but when the memory resources
are insufficient, slow memory allocation will be entered. Synchronous direct memory recovery is
very slow, especially for the popular servers with hundreds of GB of memory. The overhead of
traversing the LRU lists will be huge.

[centos@tao-tpcc-2 tools]$ sudo ./drsnoop.py

We can use drsnoop to analyze. e tee e
unified-read-p 2248 6.54 1570

sched-worker-p 2248 6.01 1569

. . . . sched-worker-p 2248 6.55 1579
Notice: In a slow memory allocation path, direct reclaim sc:ej-worter-ﬁ 208 6.7 1571

. . sched—-worker-p .

may occur more than once, so sometimes oom Kkiller el
cannot get the chance to run, the system looks hung up. Thee s o o
sched-worker-p 2248 39181573

sched-worker-p 2248 14.31 1574

Linux kernel v4.12 limit max retry times to 16. inifietoresdp 2248 6.07 231

unified-read-p 2248 2341
sched-worker-p 2248 3
sched-worker-p 2248 5.71
sched-worker-p 2248

unified-read-p 2248

unified-read-p 2248

sched-worker-p 2248

unified-read-p 2248

sched-worker-p 2248

Another weird minor page fault

High sys cpu usages comes from ‘copy_user_generic_string’ M
High latency comes from “direct reclaim’

[Samples: 499K of event 'cpu-clock', 400@ Hz, Event count (approx.): 103663569995 lost: ©/0 drop: 0/
Overhead Shared Object
tikv-server [.] rocksdb::cre32c::crc32c_3way
[kernel] copy_user_generic_string
[kernel] clear_page_c
[kernel] _raw_spin_unlock_irqrestore
[kernel] __do_page_fault
[kernel] get_page_from_freelist
[kernel] free_hot_cold_page
[kernel] __find_get_page
[kernel] unmap_page_range
[kernel] __mem_cgroup_commit_charge
[kernel] handle_mm_fault
[kernel] down_read_trylock
[kernel] up_read
tikv-server .] LZ4_compress_generic.constprop.5

Use min watermark as threshold |—| get_page_from freelist |

gfp_mask & ALLOC_NO_WATERMARKS? |—| Allocate without watermarks |

first time async compact H _alloc_pages_direct_compact |
try alloc H get_page_from freelist |
try alloc H get_page_from_freelist |

consider OOM if conditions permit H _alloc_pages_may_oom
try alloc H get_page_from_freelist |

_gfp, mask & _GFP_NOFAIL

I

Erebalan(e
[eson
11

clear_page_c ‘get_.. ||
__alloc_pages_nodem.. [
alloc_pages_vma
| handle_pte_fault [
[\ thandle_mm_fault

| | __do_page_fault | —| sync compact if conditions H _alloc_pages_direct_compact
o do_page fault

generic_file_aio_read

should retry?

Another weird minor page fault

I
[root@localhost tools]# ./stackcount.py -p 30778 __alloc_pages_nodemask
Tracing 1 functions for "__alloc_pages_nodemask"... Hit Ctrl-C to end.
. . ~C
Abstract into a simple example __alloc_pages_nodemask
handle_mm_fault
__do_page_fault
~ -vt README d"—F’age—{aL‘“
README page_ au‘t
do_generic_file_read.constprop.52
[00] 5601/5601 generic_file_aio_read2
extd_file_read
Files: 1 do_sync_read
Directories: 0 vfs_read
Touched Pages: 5601 (21M) Sys—preadiﬁ - .
Elapsed: 0.008248 seconds Sy e A asthat
__pread_nocancel
__libc_start_main
68688

fd = open(, O_RDWR,)i
buf = mmap(, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, ©, ©);

1 {
[root@localhost tools]# ./stackcount.py —p 30896 __alloc_pages_nodemask

(pread(fd, buf, 00 E<10)IE] : : W " ;
Fprintf(, buf, strerror(errno)); Iéac1ng 1 functions for "__alloc_pages_nodemask"... Hit Ctrl-C to end.

= Detaching. ..

}
madvise(buf, , MADV_DONTNEED) ;

usleep(1);

Premature memory reclamation?

There are 3 TiKVs on a machine. After turning off 1 kv (to release the memory), the system stalling
phenomenon disappears. It is confirmed by sar -B that it is related to the memory. When the
machine stalls, there are direct reclaim events.

However, because the machine has a lot of free memory (> 20%), it has not reached the Linux
memory recovery water mark. So is this a kernel bug?

, zone Normal

free 7492649

min 11298

low 14122

high 16947

scanned 32

spanned 33554432

present 33554432

managed 33021436
nr_free_pages 7492649
nr_alloc_batch 2765
nr_inactive_anon 44020
nr_active_anon 23972806
nr_inactive_file 536803
nr_active_file 440754

Premature memory reclamation?

Let’'s remember linux physical memory management first:
e Buddy
e Linear mapping of kernel address space, allow allocation of high-order memory
e User space multi-level page table mapping

order 1 order 1 order 1 order 1

EAANRNN NN

page O |page 1 | page 2 |page 3 [page4 | pages page6 | page7

Are we buddy ?

Buddy cond
e Two blocks of the same size
e Two block addresses are consecutive
e Two blocks must be separated from the same high order block (otherwise cavities)

Premature memor

External memory fragmentation

<..>-46310 [005] ... 6403758.012379: mm_vmscan_direct_reclaim_begin: order=3 may_writepage=1
gfp_flags=GFP_TEMPORARY|GFP_NOWARN|GFP_NORETRY|GFP_COMP|GFP_NOTRACK

<..>-46310 [005] 6403758.012387: <stack trace>

=> alloc_pages_current

=> new_slab

=> __ slab_alloc

> _ slab_alloc

=> kmem_cache_alloc
=> proc_alloc_inode

=> alloc_inode

=> new_inode_pseudo
=> new_inode

=> proc_pid_make_inode
=> proc_fd_instantiate
=> proc_fill_cache

=> proc_readfd_common
=> proc_readfd

=> iterate_dir

=> SyS_getdents

reclamation?

Node @, zone
Node @, zone
Node @, zone
[root@localhost ~]# cat /proc/pagetypeinfo

Page block

orde

Pages per blocl

Free pages
0,

[}
9
Q
[}
]
9
9
9
9
0,
]
9
9
Qo
9
[}
9

[Number of blocks type Unmovable Reclaimable Movable Reserve A Isolate
7 0
]
]

count per migrate type at order

zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone
zone

DMA32 1363 1772

Normal 19782 56

9
512

Unmovable
Reclaimable
Movable

Reserve

A

Isolate

Unmovable

type Reclaimable
type Movable
type Reserve
type A
type Isolate
type Unmovable
type |Reclaimable
type Movable
type Reserve
type MA
type Isolate

coooer v
coooee~N

\,
~N
»
=

cocomoccooIRNNOSISSSS R
Gr8

PO UNHICOOOOOW

cocccccccorRoScosese N

SO0 R
R RCR RN)

DMA 1 [} [}
58 38 1432 9
477 422 17097 [}

[}
9
o

[root@localhost ~]# cat /sys/kernel/debug/extfrag/
lextfrag_index
[root@localhost ~]# cat /sys/kernel/debug/extfrag/extfrag_index
INode @, zone
Node @, zone
Node @, zone

unusable_index

DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
DMA3Z -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000

Normal -1.000 -1.000|0.750 0.875 0.938 0.969 0.985 0.993 0.997 0.998 0.999

coccoccoscccocorloocoer®

=
OO0 NOOOCOOTWOSS

Premature memory reclamation?

Root issue
e Linux kernel design problem: In order to be simple and efficient, the kernel space adopts
linear mapping and allows to apply for high-level physical memory. When the system runs for
a long time and generates external memory fragments and cannot meet the high-level
memory requirements, it will trigger direct memory recycling or regularization. The system
has high latency or high sys cpu usage.

We can use these tools to analysis:

e drsnoop

e compactsnoop
e trace
[]

profiler + flame graph

https://github.com/iovisor/bcc/blob/master/tools/drsnoop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/compactsnoop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/trace_example.txt
https://github.com/iovisor/bcc/blob/master/tools/profile_example.txt

Is read ahead aggressive?

This shows that during tracing there were 128 pages read ahead but unused (that’s not many). The
histogram shows thousands of pages were read and used, mostly within 32 milliseconds. If that
time was in the many seconds, it could be a sign that read-ahead is loading too aggressively, and
should be tuned.

readahead.bt
Attaching 5 probes...
(e

Readahead unused pages: 128

Readahead used page age (ms):

@age ms:

[1] 2455 |QEEREEREEREEREERERERE

[2, 4) s vy aaidddeddeddeddadadedaeddaadecdecdecedeideaeicaeicdeciaeiceeceeicecy
[4, 8) 4417 |CQRRERERELRELREERELREREEERERELERE \
[8, 16) 7680 |CRRELELRELELELRELCERERLLERLRLELERRLELERLEALERLELRELRERERERE \
[16, 32) 4352 |QRRQREEREERLEREELEEELREREERERERARE \
[32, 64) 0 | J
[64, 128) 0 | \
[128; 256) 384 |@Q@ \

When should we expand the memory?

For database applications, the page cache hit rate has a great impact on performance. When the
remaining memory is insufficient and the working set size exceeds the current memory capacity,
expansion needs to be considered. How to determine it?

cachestat

cachestat -T 10

TIME HITS MISSES DIRTIES HITRATIO BUFFERS MB CACHED MB
21:08:58 771 0 1 100.00% 38 190
21:09:08 33036 53975 16 37:.97% 9 400
21509 1.8 1.5 68544 2 0.02% 9 668
21:09:28 798 65632 1 1.20% 9 924
21:09:38 5 67424 0 0.01% 9 1187
21:09:48 S5 11329 0 24.90 9 1232
21209258 2082 0 1 100.00% 9 1232
21.:510:08 268421 .l 12 100.00% 9 1232
24 51101 1:8 6 0 0 100.00% 9 1232
2@ 19 784 0 1 100.00% 9 1232

https://github.com/iovisor/bcc/blob/master/tools/cachestat_example.txt

Wether slow 10 is caused by disk or not?

I
. Userspace
The |0 stack of Linux is deeper, including the file PSS Pracess
system layer, block layer, and driver layer. These n
|
layers are also affected by the memory subsystem. So Kerne
H H H Submit IO
when the 10 is slow, how do we determine whether it . T
. I d k,) l Submission/Completion I /1N Block Layer
IS @ SIOW QISK ’ Staging (Merge, Insertion)]
. /biolatency ’ Tagging] Per Core
Tracing block device I/0... Hit Ctrl-C to end. T - - Software Queues
ng ’ Faimess Scheduling l
usecs : count distribution ’ 10 Accounting l
0 ->1) | | Hardware
2->3 10 | | Dispatch Queues
4-57 ;0 | |
8 -> 15 HC) | | Y Y
16 >3t e ‘ ‘ I Block device specific driver l
32 -> 63 e |
64 -> 127 il | | Status / Completion
128 -> 255 : 12 | Forkrk ok | Interrupt
256 -> 511 ;15 FhrEkkrkk
512 _i 1023 . 43 1x**x**x**x**x*x,*,,**,**x**X**¥ : | Single or multi-queue capable hardware device |
1024 -> 2047 . 52 [stttk ok o ko SRR SR SR SRR |
2048 -> 4095 .47 [kbR R R AR AR KR | # ,/biosnoop
:?:j o> jzz;s . zz ;x>:<*xx*x**x**x**x*xx*xx**x**x‘*x**x**x*} TIME(S) COMM PID DISK il SECTOR BYTES LAT(ms)
=5 . sk s sk ok s ok s ks R o kR R SRR R o
16384 -> 32767 ;15 [EEEEEEEEEES | 0.000004 supervise 1950 xvdal W 13092560 4096 0.74
32768 22165535 . 1, } 0.000178 supervise 1950 xvdal W 13092432 4096 0.61
65536 -> 131071 : 2 *
0.001469 supervise 1956 xvdal W 13092440 4096 1.24

0.001588 supervise 1956 xvdal W 13115128 4096 1.09

How to get tcp retrans without capturing ?

The pressure test tcp retrans is very high, is there a way to find which ip from the source end to
which ip a large amount of retrans occurred without tcpdump?

./tcpretrans.py -c

Tracing retransmits ... Hit Ctrl-C to end

L@

LADDR: LPORT RADDR : RPORT RETRANSMITS
192.168.10.50:60366 <-> 172.217.21.194:443 700
192.168.10.50:666 <->172.213.11.195:443 345

192.168.10.50:366 <-> 172.212.22.194:443 211
[...]

[P PingCAP (I TIDB

Q&A

[P PingCAP (I TIDB

Thank you!

