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It is a small stack-based virtual machine which runs programs injected from user space and 
attached to specific hooks in the kernel without changing kernel source code or loading 
kernel modules. 

Fundamentally eBPF is still BPF,  the Linux kernel community does not make a distinction, 
the official name is BPF. So we also follow this rule.



cBPF (legacy, Familiar and unfamiliar)
● a 32-bit wide accumulator, a 32-bit wide 

‘X’ register which could also be used 
within instructions, and 16 32-bit 
registers which are used as a scratch 
memory store.

eBPF
● an expanded set of registers and of 

instructions, the addition of maps 
(key/value stores without any restrictions 
in size), a 512 byte stack, more complex 
lookups, helper functions callable from 
inside the programs, and the possibility 
to chain several programs.



● Networking



● Networking



● Tracing

ftrace shortcomings: 
● Plain text, sometimes unable to match data 

correctly or redundant
kprobe shortcomings:

● Unsafe and poor compatibility may crash kernel
systemtap shortcomings:

● Uninstallation is not clean, causing kernel panic
perf events

● Sometimes the overhead of record is too high





BPF dev experience —— Prehistoric

BPF Assembly
● CONS

○ Low development efficiency
○ inconvenient to deal with system calls directly



BPF dev experience —— Big improve!

BPF Compiler Collection (BCC)
● PROS

○ Provide one-stop service
● CONS

○ Unnatural, need to remember some “magic”
○ Every machine needs to install kernel header packages
○ The libbcc library contains a huge LLVM or Clang library



BPF dev experience —— Next level！

libbpf + BPF CO-RE (Compile Once – Run Everywhere)
● PROS

○ Not much different from any “normal” user-space program
○ Smart BPF loader
○ Minimal dependencies



The rapid development of the community
● 31 BPF prog types
● 28 BPF map types
● New feature, such as

○ bpf spin lock
○ Kernel operations structures in BPF
○ Sleepable BPF programs
○ bpf iterator
○ bpf ring buffer

● More and more hook points
● More and more BPF helpers





If a desired behavior cannot be configured, a kernel change is required, historically, leaving 
two options:

● Native Support
1. Change kernel source code and convince the Linux kernel community that the change is 

required.
2. Wait several years for the new kernel version to become a commodity.

● Write a kernel module
1. Fix it up regularly, as every kernel release may break it
2. Risk corrupting your Linux kernel due to lack of security boundaries



With BPF, a new option is available that allows for reprogramming the behavior of the Linux 
kernel without requiring changes to kernel source code or loading a kernel module. In many 
ways, this is very similar to how JavaScript and other scripting languages unlocked the 
evolution of systems which had become difficult or expensive to change.





No, the best way to get started is to deploy and have fun



System call is the dividing line between user mode and kernel mode, observing system calls 
is the simplest entry point.

Think about these:
1. When the sys cpu usage rate is high, which system call on this machine has the most number of 

times?
2. When the sys cpu usage rate is high, which processes call a lot of system calls?
3. Which system calls take the longest time？
4. Does any system call return a special error value?
5. How to see the syscall‘s parameters and return value?



——
When the sys cpu usage rate is high, which system call on this machine has the most 
number of times?



——
When the sys cpu usage rate is high, which processes call a lot of system calls?



——
Which system calls take the longest time？



——
Does any system call return a special error value ?



——
How to see the syscall‘s parameters and return value?



Try to play with:
● execsnoop
● opensoop
● tcplife
● ext4slower
● biosnoop

To observe system 
behavior

Stress test your 
system, or observe 
the online 
environment when 
there are problems 
such as resource 
shortage, find the 
right tool to analyze 
from the 150 tools

Develop new 
tools to meet 
your needs. If 
you think you 
can solve a 
type of 
problem, 
please submit 
it to the 
community. 
The community 
experts will not 
let you down

Use BPF in more 
areas, such as 
security, networking, 
etc.





A 4-core virtual machine has a very 
high load. From the summary 
information of top, you can see that 
there are 10 tasks running, but only 1 
task is running in the list.

What happened? 
● These tasks wear stealth suits？
● Is there a bug in the Linux kernel?
● Is there a bug in top or pidstat?
● … ...



This prototype is based on the problem 
of abnormal cpu usage that my internal 
colleagues encountered when doing 
grpc-cpp vs grpc-rust bench in 2019 
year. The environment at that time was 
also a little bit more complicated, in the 
docker . So maybe docker’s bug? 
cgroup’s bug? ...



？

offcputime

https://github.com/iovisor/bcc/blob/master/tools/offcputime.py


One of our customers deployed TiDB in a virtual machine, which also has NUMA nodes. Because 
the number of CPUs is small, we did not bind cores. High-latency GC problems occur during 
business peaks, and there is no shortage of system resources from the monitoring. There is only 
one anomaly —— minor page faults. So what is going on?



We see that sys cpu has a 
relatively high proportion, and it is 
relatively simple to analyze the 
problem of on-cpu. Look directly at 
the on-cpu flame graph.

If you are familiar with the principle 
of the NUMA scheduler, you can 
know from the flame graph that it 
is caused by autonuma.



A colleague of us found that when testing a tikv cluster on a cloud platform, there would be a 
problem of 99% delay of read IO request doubled. From the monitoring, we observe that when the 
delay is abnormal, the percentage of sys cpu usage will increase, and the corresponding minor 
page fault also looks abnormally high.  We know the speed of the cloud disk is also very slow, so is 
it a disk problem? But if it is a disk reading, shouldn't it be a major page fault? Why are major page 
faults almost 0 and all minor page faults?



Let's sort out our thoughts
● The cloud host is a single node, so there is no previous autonuma problem
● From `sar -B` we see a lot of direct reclaim events
● TiKV allocates physical memory when reading the IO path

OK,  let's see which path is allocating physical memory 
first (with stackcount):

Can minor page fault happened in kernel mode?



Can minor page fault happened in kernel mode? —— Yes, of course

In our case it is due to `copy_to_user`.  

Like the defensive programming we did when designing the interface, the kernel does not trust the 
user address space passed by the user mode, so it will do some checks and make sure that the 
user space to be operated has been mapped to physical memory. If not, then deal with it. 

Another question,  TiKV uses a memory pool. The `buf` passed to `pread64` also comes from the 
memory pool, and swap is not used. Why do we need to allocate physical memory?



Another question,  TiKV uses a memory pool. The `buf` passed to `pread64` also comes from the 
memory pool, and swap is not used. Why do we need to allocate physical memory?

Because the existence of the memory pool is just to avoid frequently calling system calls to apply 
and merge VMA operations.  Physical memory is delayed allocation. 

If we expect that the physical memory corresponding to a segment of VMA will not be reclaimed, 
we can use the `mlock` system call to put the page in a special LRU list.



Generally, the speed of physical memory allocation is very fast, but when the memory resources 
are insufficient, slow memory allocation will be entered. Synchronous direct memory recovery is 
very slow, especially for the popular servers with hundreds of GB of memory. The overhead of 
traversing the LRU lists will be huge.

We can use drsnoop to analyze.

Notice: In a slow memory allocation path, direct reclaim 
may occur more than once, so sometimes oom killer 
cannot get the chance to run, the system looks hung up.

Linux kernel v4.12 limit max retry times to 16.



So,
High sys cpu usages comes from `copy_user_generic_string`
High latency comes from `direct reclaim` 



Abstract into a simple example



There are 3 TiKVs on a machine. After turning off 1 kv (to release the memory), the system stalling 
phenomenon disappears. It is confirmed by sar -B that it is related to the memory. When the 
machine stalls, there are direct reclaim events.

However, because the machine has a lot of free memory (> 20%), it has not reached the Linux 
memory recovery water mark. So is this a kernel bug?



Let’s remember linux physical memory management first:
● Buddy
● Linear mapping of kernel address space, allow allocation of high-order memory
● User space multi-level page table mapping

                                                                Are we buddy？
Buddy cond

● Two blocks of the same size
● Two block addresses are consecutive
● Two blocks must be separated from the same high order block （otherwise cavities）

order 1order 1order 1 order 1

page 0 page 1 page 2 page 6 page 7page 4 page 5page 3



External memory fragmentation



Root issue
● Linux kernel design problem: In order to be simple and efficient, the kernel space adopts 

linear mapping and allows to apply for high-level physical memory. When the system runs for 
a long time and generates external memory fragments and cannot meet the high-level 
memory requirements, it will trigger direct memory recycling or regularization. The system 
has high latency or high sys cpu usage.

We can use these tools to analysis:
● drsnoop
● compactsnoop
● trace
● profiler + flame graph

https://github.com/iovisor/bcc/blob/master/tools/drsnoop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/compactsnoop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/trace_example.txt
https://github.com/iovisor/bcc/blob/master/tools/profile_example.txt


This shows that during tracing there were 128 pages read ahead but unused (that’s not many). The 
histogram shows thousands of pages were read and used, mostly within 32 milliseconds. If that 
time was in the many seconds, it could be a sign that read-ahead is loading too aggressively, and 
should be tuned.



For database applications, the page cache hit rate has a great impact on performance. When the 
remaining memory is insufficient and the working set size exceeds the current memory capacity, 
expansion needs to be considered. How to determine it?

cachestat

https://github.com/iovisor/bcc/blob/master/tools/cachestat_example.txt


The IO stack of Linux is deeper, including the file 
system layer, block layer, and driver layer. These 
layers are also affected by the memory subsystem. So 
when the IO is slow, how do we determine whether it 
is a slow disk?



？

The pressure test tcp retrans is very high, is there a way to find which ip from the source end to 
which ip a large amount of retrans occurred without tcpdump?






